Effects of global transcription factor NtcA on photosynthetic production of ethylene in recombinant Synechocystis sp. PCC 6803
نویسندگان
چکیده
BACKGROUND Cyanobacteria are considered potential photosynthetic microbial cell factories for biofuel and biochemical production. Ethylene, one of the most important organic chemicals, has been successfully synthesized in cyanobacteria by introducing an exogenous ethylene-forming enzyme (Efe). However, it remains challenging to significantly improve the biosynthetic efficiency of cyanobacterial ethylene. Genetic modification of transcription factors is a powerful strategy for reprogramming cellular metabolism toward target products. In cyanobacteria, nitrogen control A (NtcA), an important global transcription regulator of primary carbon/nitrogen metabolism, is expected to play a crucial role in ethylene biosynthesis. RESULTS The partial deletion of ntcA (MH021) enhanced ethylene production by 23%, while ntcA overexpression (MH023) in a single-copy efe recombinant Synechocystis (XX76) reduced ethylene production by 26%. Compared to XX76, the Efe protein content increased 1.5-fold in MH021. This result may be due to the release of the negative regulation of NtcA on promoter P cpcB , which controls efe expression. Glycogen content showed a 23% reduction in MH021, and the ratio of intracellular succinate to 2-oxoglutarate (2-OG) increased 4.8-fold. In a four-copy efe recombinant strain with partially deleted ntcA and a modified tricarboxylic acid (TCA) cycle (MH043), a peak specific ethylene production rate of 2463 ± 219 μL L-1 h-1 OD730-1 was achieved, which is higher than previously reported. CONCLUSIONS The effects of global transcription factor NtcA on ethylene synthesis in genetically engineered Synechocystis sp. PCC 6803 were evaluated, and the partial deletion of ntcA enhanced ethylene production in both single-copy and multi-copy efe recombinant Synechocystis strains. Increased Efe expression, accelerated TCA cycling, and redirected carbon flux from glycogen probably account for this improvement. The results show great potential for improving ethylene synthetic efficiency in cyanobacteria by modulating global regulation factors.
منابع مشابه
Syringae Is Not Required for Stable Ethylene Production in Recombinant
Ethylene (C2H4) is a simple alkene of high commercial value due to multitude of large-scale uses in plastic industry, and as a potential fuel for spark-ignition piston engines. Currently ethylene is derived entirely from non-renewable sources, but it can also be produced directly from atmospheric CO2 via microbial biosynthesis in photosynthetic cyanobacterial hosts by the expression of ethylene...
متن کاملIdentification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803
In cyanobacteria, nitrogen homeostasis is maintained by an intricate regulatory network around transcription factor NtcA. Although mechanisms controlling NtcA activity appear to be well understood, its regulon remains poorly defined. To determine the NtcA regulon during the early stages of nitrogen starvation for the model cyanobacterium Synechocystis sp. PCC 6803, we performed chromatin immuno...
متن کاملRole of NtcB in activation of nitrate assimilation genes in the cyanobacterium Synechocystis sp. strain PCC 6803.
In Synechocystis sp. strain PCC 6803, the genes encoding the proteins involved in nitrate assimilation are organized into two transcription units, nrtABCD-narB and nirA, the expression of which was repressed by ammonium and induced by inhibition of ammonium assimilation, suggesting involvement of NtcA in the transcriptional regulation. Under inducing conditions, expression of the two transcript...
متن کاملGeneral distribution of the nitrogen control gene ntcA in cyanobacteria.
The ntcA gene from Synechococcus sp. strain PCC 7942 encodes a regulatory protein which is required for the expression of all of the genes known to be subject to repression by ammonium in that cyanobacterium. Homologs to ntcA have now been cloned by hybridization from the cyanobacteria Synechocystis sp. strain PCC 6803 and Anabaena sp. strain PCC 7120. Sequence analysis has shown that these ntc...
متن کاملRegulation of the scp Genes in the Cyanobacterium Synechocystis sp. PCC 6803--What is New?
In the cyanobacterium Synechocystis sp. PCC 6803 there are five genes encoding small CAB-like (SCP) proteins, which have been shown to be up-regulated under stress. Analyses of the promoter sequences of the scp genes revealed the existence of an NtcA binding motif in two scp genes, scpB and scpE. Binding of NtcA, the key transcriptional regulator during nitrogen stress, to the promoter regions ...
متن کامل